ADDITIVITY OF MEASURE IMPLIES ADDITIVITY OF CATEGORY

BY

TOMEK BARTOSZYŃSKI

ABSTRACT. In this paper it is proved that 2^{ω} -additivity of category follows from 2^{ω} -additivity of measure, and a combinatorial characterization of additivity of measure is found.

DEFINITIONS. For abbreviation we denote by A(c), B(c), A(m), B(m), D and hD the following sentences:

 $A(c) \equiv \text{union of less than } 2^{\omega} \text{ meager sets is meager.}$

 $B(c) \equiv \text{union of less than } 2^{\omega} \text{ meager sets is not } \omega^{\omega}$.

A(m) and B(m) are defined analogously by replacing the word "meager" by "Lebesgue measure zero". The symbols \forall^{∞} , \exists^{∞} abbreviate "for all but finitely many" and "exist infinitely many". Let \prec denote the following order on ω^{ω} . For $f, g \in \omega^{\omega}, f \prec g \equiv \forall^{\infty} n f(n) < g(n)$.

$$D \equiv \forall F \subset \omega^{\omega}[|F| < 2^{\omega} \to \exists g \in \omega^{\omega} \ \forall f \in F \ f < g].$$

 $hD \equiv$ for every family of power less than 2^{ω} which consists of converging series there exists a converging series eventually dominating each of them.

Recall here some known facts which will be used later.

THEOREM 1 (MILLER, TRUSS). $A(c) \equiv B(c) \& D$. \square

THEOREM 2 (MILLER). Assuming D

$$B(c) \equiv \forall F \subset \omega^{\omega} \big[|F| < 2^{\omega} \to \exists g \in \omega^{\omega} \, \forall f \in F \, \exists^{\infty} n \, f(n) = g(n) \big]. \quad \Box$$

THEOREM 3 (KUNEN). $A(c) \leftrightarrow A(m)$.

For the proofs see [1].

THEOREM 4 (MILLER). $A(m) \rightarrow D$.

COROLLARY (MILLER). $A(m) \& B(c) \rightarrow A(c)$.

For the proof of Theorem 4 see [2].

Now we will find a combinatorial characterization of A(m) which will be useful to establish the main result.

THEOREM 5. $A(m) \equiv hD$.

Received by the editors December 26, 1982.

1980 Mathematics Subject Classification. Primary 03E05; Secondary 28A99.

PROOF. \leftarrow We will work in the space R with Lebesgue measure m. Let $\{I_n: n < \omega\}$ be the enumeration of the standard basis of R, i.e. open intervals with rational endpoints. Take any family $\{G_{\xi}: \xi < \lambda < 2^{\omega}\}$ of null sets in R. For every $\xi < \lambda$ we can find basic intervals $\{I_n^{\xi}: n < \omega\}$ such that

$$\forall_{\xi<\lambda}G_{\xi}\subset\bigcap_{n}\bigcup_{m\geq n}I_{m}^{\xi}\quad \text{and}\quad \forall_{\xi<\lambda}\sum_{n=1}^{\infty}m\big(I_{n}^{\xi}\big)<\infty.$$

Now for $\xi < \lambda$ define $f_{\xi} \in 2^{\omega}$ as

$$f_{\xi}(n) = \begin{cases} 1 & I_n = I_k^{\xi} \text{ for some } k \in \omega \\ & \text{for } n < \omega. \end{cases}$$

By this definition we have

$$\forall_{\xi<\lambda}\sum_{n=1}^{\infty}f_{\xi}(n)\cdot m(I_n)<\infty.$$

Now take the family $\{\sum_{n=1}^{\infty} f_{\xi}(n) \cdot m(I_n): \xi < \lambda\}$. It is easy to see that using hD we can get $f \in 2^{\omega}$ such that $\sum_{n=1}^{\infty} f(n) \cdot m(I_n) < \infty$ and $\forall_{\xi < \lambda} \forall^{\infty} n \ f_{\xi}(n) \leq f(n)$. Let $G = \bigcap_{n} \bigcup_{m > n, f(m) = 1} I_m$. We have

$$G_{\xi} \subset \bigcap_{n = m > n} I_n^{\xi} \subset G \text{ for } \xi < \lambda.$$

This finishes the proof because G is a null set. \square

- → LEMMA. The following conditions are equivalent:
- (i) hD.
- (ii) $\forall F \subset \omega^{\omega}[|F| < 2^{\omega} \to \exists I_n \subset \omega [|I_n| < n^2 \land \forall f \in F \forall^{\infty} n f(n) \in I_n]].$
- (iii)

$$\begin{split} D \& \forall F \subset \omega^{\omega} \bigg[\bigg(\big| F \big| < 2^{\omega} \& F < f \& \sum_{n=1}^{\infty} \frac{1}{f(n)} < \infty \bigg) \\ \rightarrow \exists I_n \subset \omega \sum_{n=1}^{\infty} \frac{|I_n|}{f(n)} < \infty \ \forall g \in F \ \forall^{\infty} n \ g(n) \in I_n \bigg]. \end{split}$$

PROOF OF THE LEMMA. (i) \rightarrow (ii). Let $F = \{f_{\xi}: \xi < \lambda < 2^{\omega}\} \subset \omega^{\omega}$. Define for $\xi < \lambda$ the series

$$a_n^{\xi} = \begin{cases} \max\{k^{-2} \colon n = f_{\xi}(k)\}, & n \in Rg(f_{\xi}), \\ 0, & n \notin Rg(f_{\xi}). \end{cases}$$

By hD there exists $\sum_{n=1}^{\infty} a_n$ eventually dominating all $\sum_{n=1}^{\infty} a_n^{\xi}$, $\sum_{n=1}^{\infty} a_n < 1$. Denote $I_k = \{n: a_n \ge k^{-2}\}$ for $k < \omega$. Notice that $|I_n| < n^2$ for almost every $n < \omega$ and $\forall g \in F \ \forall^{\infty} n \ g(n) \in I_n$. Q.E.D.

(ii) \rightarrow (i). Take any family of coverging series, i.e. $F = \{f_{\xi}: \xi < \lambda < 2^{\omega}\}$ where $f_{\xi}: \omega \rightarrow Q$ (rationals) for every $\xi < \lambda$. Define for $\xi < \lambda$ sequences $\{n_{k}^{\xi}: k < \omega\} \subset \omega$

such that

$$\forall_{\xi<\lambda}\forall^{\infty}\,k\sum_{i>n_{\ell}^{k}}^{\infty}f_{\xi}(i)<2^{-k}.$$

Notice that (ii) obviously implies D, so we can find $h \in \omega^{\omega}$ such that

$$\forall_{\xi<\lambda}\forall^{\infty}k\ n_k^{\xi} < h(k).$$

Now define

$$f'_{\xi}(k) = f_{\xi|[h(k),h(k+1))}$$
 for $\xi < \lambda$.

We apply (ii) to the family $\{f'_{\xi}: \xi < \lambda\}$ to get $\{I_n: n < \omega\}$ such that $\forall k \mid I_k \mid < k^2$ and $\forall_{\xi < \lambda} \forall^{\infty} k f'_{\xi}(k) \in I_k$. Each I_k consists of functions from [h(k), h(k+1)] to Q. Now define a series $f: \omega \to Q$ in the following way:

$$f(n) = \sup \left\{ s(n) : s \in I_k \text{ and } \sum_{i=h(k)}^{h(k+1)} s(i) < 2^{-k} \right\}.$$

for $n \in [h(k), h(k+1))$. Notice that $\sum_{n=1}^{\infty} f(n) \le \sum_{n=1}^{\infty} n^2/2^n < \infty$ and $\forall_{\xi < \lambda} \forall^{\infty} n$ $f_{\xi}(n) \le f(n)$, so f is what we were looking for. \square

(ii) \rightarrow (iii). Take any family $F \subset \omega^{\omega}$ such that $|F| < 2^{\omega}$, F < f and $\sum_{n=1}^{\infty} 1/f(n) < \infty$. We have to find $\{I_n : n < \omega\}$ such that

$$\sum_{n=1}^{\infty} \frac{|I_n|}{f(n)} < \infty \quad \text{and} \quad \forall g \in F \, \forall^{\infty} n \, g(n) \in I_n.$$

Let $\{R_n: n < \omega\}$ be a nondecreasing sequence such that

$$\sum_{n=1}^{\infty} \frac{R_n}{f(n)} < \infty \quad \text{and} \quad R_n \to \infty.$$

Pick a sequence $\{u_n: n < \omega\}$ such that $\forall n \ R_{u_n} \ge n^2$. For $g \in F$ let g' be defined in the following way:

$$g'(k) = g_{[u_k, u_{k+1})}$$
 for $k < \omega$.

Applying (ii) to the family $\{g': g \in F\}$ and define as in the previous proof:

$$J_n = \{s(n) : s \in I_k\} \quad \text{for } n \in [u_k, u_{k+1}).$$

It is easy to see that

$$\forall g \in F \, \forall^{\infty} n \quad g(n) \in J_n \quad \text{and} \quad \forall^{\infty} n \quad |J_n| \leq R_n$$
.

As we noticed earlier (ii) $\rightarrow D$ so the implication (ii) \rightarrow (iii) is proved. \Box

(iii) \rightarrow (ii). Take any $F \subset \omega^{\omega}$, $|F| < 2^{\omega}$. By D we can find $f \in \omega^{\omega}$ and a strictly increasing sequence $\{k_n : n < \omega\} \subset \omega$ such that F < f and $k_n / f(n) = n^{-2}$ for every $n < \omega$. For $g \in F$ define $g' \in \omega^{\omega}$ in the following way:

$$g'$$
: $\frac{g(1)}{k_1 \text{ times}}$ $\frac{g(2)}{k_2 \text{ times}}$ $\frac{g(3)}{k_3 \text{ times}}$

Now apply (iii) to the family $\{g': g \in F\}$ and define $J_n = I_j$ of minimal power from the k_n th block for $n < \omega$. We have

$$\infty > \sum_{n=1}^{\infty} \frac{|I_n|}{f'(n)} \ge \sum_{n=1}^{\infty} \frac{k_n |J_n|}{f(n)} = \sum_{n=1}^{\infty} \frac{|J_n|}{n^2}.$$

Thus $|J_n| < n^2$ for almost every $n < \omega$ and $\forall g \in F \ \forall^{\infty} n \ g(n) \in J_n$. This finishes the proof of the lemma. \square

Now we will prove that $A(m) \to (iii)$. By Theorem 4 we already know that $A(m) \to D$. Take any family $F \subset \omega^{\omega}$, $F \prec f$ such that $|F| < 2^{\omega}$ and $\sum_{n=1}^{\infty} f(n)^{-1} < \infty$. Let $X = \prod_{n=1}^{\infty} f(n)$ and

$$H_g = \{x \in X : \exists^{\infty} n \ x(n) = g(n)\} \quad \text{for } g \in X.$$

Denote by μ the standard product measure on X.

$$\mu(H_g) = \mu\Big(\bigcap_{n = m > n} \{x \in X : x(m) = g(m)\}\Big)$$

$$\leq \mu\Big(\bigcup_{m > n} \{x \in X : x(m) = g(m)\}\Big) \leq \sum_{m > n} f(m)^{-1} \to 0 \quad \text{as } n \to \infty.$$

Thus $\mu(H_g) = 0$ for $g \in X$. By A(m) we can find a closed set, i.e. a tree T such that the set of its branches [T] has positive measure and $[T] \cap H_g = \emptyset$ for $g \in F$. Denote $T(n) = \{x(n): x \in [T]\}$ and $T_s = \{t \in T: s \le t\}$. We can assume that $[T_s]$ has positive measure for $s \in T$.

CLAIM. $\forall g \in F \exists s \in T \forall n > lh(s) g(n) \notin T_s(n)$.

PROOF. Assume that it is false for some $g \in F$. Then there is a branch $x \in [T]$ such that $\exists^{\infty} n \ x(n) = g(n)$. But this means that $[T] \cap H_g \neq \emptyset$, thus a contradiction. \Box

Therefore for every $g \in F$ we have some subtree T_s as in the claim: let us call them $T_{s_1}, T_{s_2}, T_{s_3}, \ldots$. Denote $I_m^n = T_s(m)$ for $n, m < \omega$. It is easy to see that

$$\prod_{m=1}^{\infty} \frac{|I_m^n|}{f(m)} > 0 \quad \text{for all } n < \omega.$$

By changing the first few I_m^n 's for every $n < \omega$ we can obtain $\{I_m^n: n, m < \omega\}$ (use the same name) such that

$$\prod_{m=1}^{\infty} \frac{|I_m^n|}{f(m)} > 1 - 2^{-n-1} \quad \text{for } n < \omega.$$

Now let $J_m = \bigcap_n I_m^n$ for $m < \omega$. Obviously $\prod_n |J_n|/f(n) > 0$. Let $I_n = f(n) - J_n$, $n < \omega$. It is not very hard to see that $\sum_{n=1}^{\infty} |I_n|/f(n) < \infty$ and $\forall g \in F \forall^{\infty} n \ g(n) \in I_n$. This finishes the proof of Theorem 5. \square

THEOREM 6. $hD \rightarrow A(c)$.

COROLLARY.
$$A(m) \rightarrow A(c)$$
.

PROOF. By Theorems 1 and 2 in order to prove Theorem 6 it is enough to show that (ii) implies

$$\forall F < \omega^{\omega} \big[|F| < 2^{\omega} \to \exists g \in \omega^{\omega} \, \forall f \in F \exists^{\infty} n \, f(n) = g(n) \big].$$

Take any family $F \subset \omega^{\omega}$, $|F| < 2^{\omega}$. We have to find $g \in \omega^{\omega}$ such that $\forall f \in F \exists^{\infty} n$ f(n) = g(n). For $f \in F$ define f' in the following way:

$$f'(k) = f_{[k^3,(k+1)^3)}, \qquad k < \omega.$$

Applying (ii) to the family $\{f': f \in F\}$ we obtain $\{I_n: n < \omega\}$ such that $|I_n| < n^2$ for $n < \omega$ and $\forall f \in F \forall^{\infty} n$ $f'(n) \in I_n$. Notice that each I_n consists of less than n^2 functions whose domains have power bigger than n^2 (because $(n+1)^3 - n^3 > n^2$). Thus it is easy to find the required function picking one value out of each function from I_n for every $n < \omega$. This finishes the proof of Theorem 6. \square

In fact we have proved

COROLLARY. If unions of less than λ null sets are null than unions of less than λ meager sets are meager. \square

This was also proved later by J. Raisonnier and Y. Stern.

REFERENCES

1. Arnold Miller, Some properties of measure and category, Trans. Amer. Math. Soc. 266 (1981), 93-114.
2. ______, Additivity of measure implies dominating real, Proc. Amer. Math. Soc. (to appear).

00-785 Warsaw, Grottgera 12A-51, Poland